CONGRUENCES CONCERNING LEGENDRE POLYNOMIALS III
نویسندگان
چکیده
منابع مشابه
Congruences concerning Legendre polynomials III
Suppose that p is an odd prime and d is a positive integer. Let x and y be integers given by p = x2 + dy2 or 4p = x2 + dy2. In this paper we determine x (mod p) for many values of d. For example,
متن کاملCongruences concerning Legendre Polynomials
Let p be an odd prime. In the paper, by using the properties of Legendre polynomials we prove some congruences for È p−1 2 k=0 2k k ¡ 2 m −k (mod p 2). In particular, we confirm several conjectures of Z.W. Sun. We also pose 13 conjectures on supercongruences.
متن کاملJ. Number Theory 133(2013), 1950-1976. CONGRUENCES CONCERNING LEGENDRE POLYNOMIALS II
Abstract. Let p > 3 be a prime, and let m be an integer with p ∤ m. In the paper we solve some conjectures of Z.W. Sun concerning Pp−1 k=0 2k k 3 /mk (mod p2), Pp−1 k=0 2k k 4k 2k /mk (mod p) and Pp−1 k=0 2k k 2 4k 2k /mk (mod p2). In particular, we show that P p−1 2 k=0 2k k 3 ≡ 0 (mod p2) for p ≡ 3, 5, 6 (mod 7). Let {Pn(x)} be the Legendre polynomials. In the paper we also show that P[ p 4 ]...
متن کاملCongruences concerning Bernoulli numbers and Bernoulli polynomials
Let {Bn(x)} denote Bernoulli polynomials. In this paper we generalize Kummer’s congruences by determining Bk(p−1)+b(x)=(k(p − 1) + b) (modp), where p is an odd prime, x is a p-integral rational number and p − 1 b. As applications we obtain explicit formulae for ∑p−1 x=1 (1=x ) (modp ); ∑(p−1)=2 x=1 (1=x ) (modp ); (p − 1)! (modp ) and Ar(m;p) (modp), where k ∈ {1; 2; : : : ; p− 1} and Ar(m;p) i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Number Theory
سال: 2013
ISSN: 1793-0421,1793-7310
DOI: 10.1142/s1793042113500097